biblioteche, bologna, libri, cd, dvd, prestito, consultazione, autori, editori, lettura, internet biblioteca, wifi in biblioteca, biblioteche Bologna, Sala Borsa, comune bologna,comune imola, provincia bologna,regione emilia romagna

ItaEng

Hai selezionato la ricerca nel catalogo

E : the story of a number

Maor, Eli <author>

eBook 2009 - 1994

risorsa Web

Abstract

"The interest earned on a bank account, the arrangement of seeds in a sunflower, and the shape of the Gateway Arch in St. Louis are all intimately connected with the mysterious number e. In this informal and engaging history, Eli Maor portrays the curious characters and the elegant mathematics that lie behind the number. [...]
  • Accedi
  • Scheda
  • Unimarc
eBook
Monografia
Descrizione *E : the story of a number / Eli Maor. - Princeton, N.J. : Princeton University Press, [2009]
©1994
1 online resource (xiv, 227 pages) : illustrations
Note Previous edition: 1994
Paperback reissue, in the Princeton Science Library series, 2009
Formato pdf/epub
Accesso riservato secondo le condizioni contrattuali https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=430165
ISBN 9781400832347
9781283379878
1400832349
1283379872
9780691141343
9780691058542
9780691033907
0691141347
0691058547
0691033900
Collana Princeton science library
Primo Autore
Maor, Eli <author>
Anno pubblicazione 2009 - 1994
Altri titoli e the story of a number
Nota di contenuto 1. John Napier, 1614 -- 2. Recognition -- 3. Financial Matters -- 4. To the Limit, If It Exists -- 5. Forefathers of the Calculus -- 6. Prelude to Breakthrough -- 7. Squaring the Hyperbola -- 8. The Birth of a New Science -- 9. The Great Controversy -- 10. e[superscript x]: The Function That Equals its Own Derivative -- 11. e[superscript theta]: Spira Mirabilis -- 12. (e[superscript x] + e[superscript -x])/2: The Hanging Chain -- 13. e[superscript ix]: "The Most Famous of All Formulas" -- 14. e[superscript x + iy]: The Imaginary Becomes Real -- 15. But What Kind of Number Is It? -- App. 1. Some Additional Remarks on Napier's Logarithms -- App. 2. The Existence of lim (1 + 1/n)[superscript n] as n [approaches] [infinity] -- App. 3. A Heuristic Derivation of the Fundamental Theorem of Calculus -- App. 4. The Inverse Relation between lim (b[superscript h] -- 1)/h = 1 and lim (1 + h)[superscript 1/h] = b as h [approaches] 0 -- App. 5. An Alternative Definition of the Logarithmic Function -- App. 6. Two Properties of the Logarithmic Spiral -- App. 7. Interpretation of the Parameter [phi] in the Hyperbolic Functions -- App. 8. e to One Hundred Decimal Places